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A solution of the axisytametrie contact problem for a half-space is obtained taking into account transient heat generation due 
to faietion and wear, assuming a quadratic variation of the normal displacements along the radial coordinate. The problem is 
reduced to a non-linear Volterra integral equation in the dimensionless radius of the contact area. Asymptotic solutions of this 
equation are constructed for short and long periods of time, and a numerical algorithm is also developed for investigating it in 
the general case. The proposed mathematical methods enable the effect on the dimensions of the contact region of two processes 
of opposite kind, namely, frictional heating and wear, to be investigated. 

The interaction of frictional heating and wear under steady thermal conditions at a contact was 
investigated in [1, 2]. Transient heat generation was considered in [3] taking the wear between the 
contacting surfaces in the plane formulation into account. An algorithm for solving the corresponding 
axisymmetric contact problem is developed below. 

1. Suppose an elastic axisymmetric massive body (an elastic punch) with shear modulus I.t and Poisson's 
ratio v, is pressed with a force P and slides with a velocity V, sufficiently small to enable inertial effects 
to be neglected, over the surface of a rigid half-space in the direction of thex-axis (Fig. 1). Wear of the 
base of the punch then occurs, accompanied by heat gen%ation due to friction in the contact region. 
We will assume that the surface of the first body is heat conducting, while the second body is a perfect 
heat insulator. All our subsequent discussions will be carried out in a system of x, y, z coordinates 
connected with the punch. When solving the problem we will consider it in section as a half-plane, the 
boundary of which is slightly curved (R0 is the radius of curvature). 

Starting from the equations of uncoupled thermoelasticity, we can write the contact condition between 
the interacting bodies 

u~ + u~ + u~ v = A ( t ) -  r 2 / (2R o) (r ~ a(t), t >~ O) (1.1) 

Here u~(r, t) are the elastic displacements of the boundary points of the punch in the direction of the 
• 7],-- - • w • • z-axas, Uz(r, t) are the normal temperature &splacements, Uz(r, t) are the verUcal &splacements due to 

T w wear and A(t) is the approach of bodies 1 and 2 as rigid wholes. It is assumed that uz, uz and A are 
commensurable with Uz e, and thus we can formulate the boundary conditions with respect to the 
undeformed surfaces of the contacting bodies, assumed in the linear theory of elasticity, i.e. relation 
(1.1) holds whenz = 0. 

At the initial instant of time the function u e and the contact pressure p(r, t) in the Hertz theory 
approximation, are given by the formulae [4] (r ~< a(0)) 

3P[2a 2 (0 ) -  r 2 ] 3P4a 2 (0 ) -  r 2 
u~= 160a3(0) ' P= 2~a3(0) ' 0= I'tl-v (1.2) 

The first equation in (1.2) is obtained on the assumption that the displacement u~ due to the action 
of the normal stresses is considerably greater than that due to the shear forces. An estimate of the error 
resulting from this assumption can be found, for example, in [5]. 

We will approximate the sum of the thermal displacements of the surface of the punch due to heating 
by the heat flux 
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Fig. 1. 

q(r, t) =]Vp(r, t) (r <~ a(t), t ~> 0) (1.3) 

(/'is the coefficient of  sliding friction) and its normal displacements due to wear at each instant of time 
t ~> 0 by the quadratic relation 

uz r (r, t) + u~ (r, t) = C o (t) + C 2 (t)r 2 .(r <- a(t)) (1.4) 

Then, using (1.4), we can write boundary condition (1.1) in the form 

u~(r,t) = Do( t ) -  D2(t)r 2 ( r ~  a(t)) 

Do(t)= A(t)-Co(t), D2(t)= C2(t)+(2Ro) -t 

Cj(O) = O ( j = 0 , 2 )  

(1.5) 

and, consequently, when finding u~(r, t) andp(r, t) (t > 0) we can use Hertz's formulae. Hence, comparing 
the coefficients of  # in expressions (1.2) and (1.5) we have 

D2(t) = 3P[160a3(t)] -! (t >~ O) (1.6) 

Introducing into the second equation of  (1.2) the value of the radius of the contact area a(t) from 
(1.6) we obtain 

p ( r , t ) = 8 x - t O D 2 ( t ) 4 a 2 ( t ) - r  2 (r<~a(t), t>~O) (1.7) 

Hence, it follows from relations (1.3), (1.6) and (1.7) that to determine the contact pressurep(r,  t), 
the frictional heat flux q(r, t) and the radius of the contact area a(t) it is sufficient to know the form of 
the function D2(t). 

Note that under steady conditions of heat generation, the radius of the contact zone can be calculated 
using the formula [6] 

a0 = nK[ 1,566(1 + v)]VarO] -I (1.8) 

where K is the thermal conductivity and aT is the coefficient of  linear thermal expansion of  the material 
of the punch. The quantity a0 here is independent of  the pressing force P and is the limiting value of 
a(t) as P --, **. This limit does not exist in the purely isothermal problem. 
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2. Let us determJaae the temperature T(r, t) and the normal displacement Uzr(r, t) of the surface of an 
elastic half-space heated by a heat flux q(r, t) of the form (1.3). To do this we will use the fundamental 
solution [7] of the unsteady heat-conduction equation for a source of heat of constant power q0 acting 
instantaneously at the point O (Fig. 1) 

T°(r , t )= q° exp[-r2(4kt)-I] (r>~O, t>O) (2.1) 
4pc( r¢kt ) ~ 

Here k = K(pc) -1 is the thermal diffusivity, p is the density and c is the specific heat capacity of the 
material of the half-space. 

The vertical displacement of the boundary of the half-space z = 0, free from external forces, corres- 
ponding to the the]anal field (2.1) is equal to [8] 

(3 u°(r, t )= 0 t r ( l + v ) q ° o  ; 2 ; - - - ~ -  (r~>0, t > 0 )  (2.2) 
4~Kt 

where O(a; T, x) is the confluent hypergeometric function. 
From (2.1) and (2.2), bearing in mind the principle of superposition (the instantaneous point source 

method [7]), we have 

T(r , t )= 1 t ,,(x)27t x 2 sdtpdsdx 
4pc(~k) ~ 0I 0 ~ 0I q(s,x)e- ( t -  x) ~ (2.3) 

UzT (,., t)  = ar(l+v)j 
4gK 

0 

X 2 = r 2 - 2 r s c o s c p + s  2 

4k(t - x) 

I" J" q(s,x)O ~-; 2 ; -  - -  , 
0 0 

(2.4) 

, r<~a(t), t > 0  

When formulating contact problems of the theory of elasticity with wear the law of wear is most often 
taken in the form [9] 

t 

u~ ( r , t ) =k , v l  p(r,'Od'¢ ( r ~  a(t)) (2.5) 
0 

(kw is the wear coefficient). Such a relationship occurs when the wear is produced by abrasive particles 
and in some cases of fatigue wear. 

Recently more oamplex hereditary-ageing models [10, 11] have come to be used, which take into 
account the influence of after-effect 

! 

u~V(r,t) = kw ~ Kl(x)K2( t -x)p(r ,x)dx  (r < - a(t)) (2.6) 
0 

Kl(x)= l+o te  -I~x, K 2 ( t - x ) = e  -~C'-x) 

where oq 13, "/are parameters determined experimentally for each tribocoupling. The wear law (2.6), 
unlike (2.5), enables processes with limited wear to be described. 

Note that in expressions (2.5) and (2.6) it is necessary to follow the change in the contact area with 
time, and when it increases monotonically, for example, in the segment 01 ~< t ~< 02 (0a < 02, 01 i> 0) 
we must put [12]:p(r., t) = 0 when t ~< t. (01 ~< t. ~< 02). Here t. is the time taken for the boundary of 
the contact region to reach arbitrary points with coordinates z = 0, r. = a(t.). 

We substitute rehaions (1.3) and (1.7) into (2.4) and (2.5). Using (1.8) we can write the last formulae 
in the form 
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t A(t,x) 
uT(r't)= .r..8k S ~ D2('Qa](A2-S2)g(t-z)SFo(R,S)dSdx (2.7) 

I. ~uunao o o 

u~V(r,t) = 80Vkw i D2(X) ~ a 2 -  r2 dx (2.8) 
it o 

Here 

A 2 --'- n2 [ g, R 2 = 1.2 / g,  S 2 = S 2 I g, g(t-- Z) = 4k( t -  X) (2.9) 

2~ F 3 1 Fo(R,S) = f , I , / - ;  2; - ( R  2 -2RScostp+S 2) d~o 
o L2 

To calculate the quadrature in (2.9) we will expand the confluent hypergeometric function in series 

" (2i+l)!!(-X2)i (X 2<oo) 

Using the integral [13] 

oL ~ t , s j J  ' .s:o " t , s )  

we obtain 

Fo(R.S,=21t~. (2i+l'!l(-s2)i ~ (C/ ,2(RI  2j (2.10) 
i=0 (2i)!!(i + 1)! j=0 

We will now introduce the function 

A 

F(R,A) = ~ ~ -S2 Fo(R,S)SdS (2.11) 
o 

Substituting (2.10) into (2.11) and taking into account the value of the integral [13] 

A 
S ~ ' ~ - S 2 S 2 i - 2 j + l d S =  (2i-2j)!!  A2i_2j+3 
0 (2 i -  2) + 3)![ 

we will have 

i F(R,A)=_2rtAj~=o ~ (-1)i+'(2i+ I)!!(2i-2j)!!(cJ)2(R~2SA2i+ 2 
~=.i (2i)!!(i+1)!(2i-2j+3)![ \ A )  (2.12) 

In (2.12) we have changed the order of summation with respect to i andj. 
We will write the normal displacement of the surface of the punch due to wear (2.8) in the form 

W'r t) = 80Vkw i De (z)a('Q[l - r 2 / (2a 2)+... ]dz (2.13) 
U z t  , 

0 

This representation is justified [14] by virtue of the observation, made above, regarding the behaviour 
of the contact pressure in the integrands of (2.5) and (2.6). 

Now comparing the coefficients of # in relations (1.4), (2.7), (2.12) and (2.13) we obtain 

8k i~ i t 
D2(t) = 1.566a-'----~ .= (i + 1)! ! (-A2)i+' D2(x)[a(x)l-l dx_ 
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(2.14) 

We will change tlae dimensionless variables 

~" = 4ktao 2, ~ = 4kzao 2 (2.15) 

in (2.14) and use the sum of the series 

~. (_A 2)i+1i = 1 - (1 + a 2)e -A: = B[A( t ,  X)] =/~(t, x) 
i=l (i + 1)! 

We thereby obtain a Volterra integral equation in D2(i r ) 

a0 [ /~(i',~)O2(~)a-I(z)dz - 
D2(i) = 0,783 

f evk.  
-a0t: J D2(r~)a- ' ( rc )d i+/92(0  ) ~t := ~ )  (2.16) 

0 

Using the new required function ~(~r) = a(ir)a~ 1 and relation (1.6), we can convert integral equation 
(2.16) to the form (the tilde is omitted) 

[' ' ] i  0,783 a3(t ) a3(0 ). o [ B ( t , x ) - 0 , 7 8 3 ]  ( t ~  > 0) (2.17) 

If the vertical displacement u~(r, t) is given by the hereditary-ageing type relation (2.6) the second 
term in the integr~md of (2.17) must be multiplied by the product Kl(x)K2( t  - x). 

3. We will construct a scheme for solving integral equation (2.17). To do this we split the integration 
interval [0, t] into L parts of length h = tL- l :  0 = Xo < Xl < • • • < xz = t. In each section x e [Xj_l, xj] 
(j = 1, 2 , . . .  L)  we approximate the required function a(x)  by constants a(tj) =- aj (tj = xj - h/2) .  Using 
the first formula of  (2.9) and (2.15) with x e [xj-1, xj] we obtain 

A 2 = a 2 ( t -  x) -I, dx = 2a2A-3dA (3.1) 

Integral equation (2.17) is then transformed into a recurrent algebraic relation which enables the 
value of  a(tL) to be determined from the preceding values a(tj) (j = 1, 2 , . . . ,  L - 1) 

1 1 I L-t 2a2Aj t+O,783~ch 
- -  ~ ,  " 4 a3( tL)  a3(0) 0.783 j=l aj  

2 
02~ B ( A )  dA, 2 aj 

a U tmj 

tr~j =[ L -  J + ~ ( - 1 ) m ]  h 

(m = 1,2) 

(3.2) 

We start the calculations using Eqs (3.2) at L = 1; in this case a(tl) = a(0), which corresponds to the 
radius of  the contact area of  the isothermal Hertz problem. If the surface of the elastic punch is initially 
not curved, i.e. a(0) ---> ** and D2(0) = 0, integral equation (2.16) has the trivial solution of D2(t)  = 0 
(t > 0), which corresponds to a uniform pressure distribution over the surface of the half-space. The 
influence functions AjL in (3.2) were found using a software package [15]. 

Figure 2 shows the change in the dimensionless radius a(t)  of the contact area in the ease of  abrasive 
wear (2.5). The initial value of a(0) was assumed to be 5. Curves 1-3 were calculated for x = 0, 0.5 and 
1.5, respectively. If there is no wear (~: = 0) the function a( t )  is a linearly decreasing function (see (3.3) 
below) and for sufficiently large values of the time reaches a value of a** = 0.783a0, which is the solution 
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Fig. 2. Fig. 3. 

of the problem under steady heat-generation conditions. A numerical analysis shows that in the range 
9 < r < 1.277 there is always a value t = 01, beginning from which the contact area will increase mono- 
tonically. For K > 1.277 the function a(t) is a monotonically increasing function over the whole period 
of operation of the coupling considered. 

The radius of the contact area behaves somewhat differently in the hereditary-ageing model of wear 
• . # o 

(2.6) (Fig. 3). The results presented here were obtained for the following values of the parameters: (t 
= 40; ~ = 1; %, = 0.5. As above, curves 1-3 correspond to !¢ = 0, 0.5 and 1.5. The presence at the initial 
stage of the contact interaction when r > 0 of a peak in the values of a(O2) > a(0), after reaching which 
a(t) must reach the asymptote a . ,  is characteristic for this form of wear. 

We will now construct the asymptotic solutions of integral equation (2.17) for short and long times. 
In the fast version, as follows from (3.1),A >> 2, whence B(A) ~- 1. The initial integral equation is then 
written in the form 

I 1 
a 3 (t) a 3 (0) 

and its solution is the linear function 

t 

_ _  = (i .277_ i¢)i dx 0 a - ~  (t~> O) 

a(t) = a(0) - 1/3(1,277 - r ) t  (3.3) 

Relation (3.3) confirms the previous conclusions that the dimensionless radius of the contact area 
may be either a monotonically decreasing function or a monotonically increasing function depending 
on the value of the coefficient 1¢ for small values of the time. In the first case frictional heat generation 
predominates at the contact, while in the second wear predominates. 

Using (2.15) and the notation introduced above, we can convert (3.3) to dimensional form 

a(t) = a(0) - ~-~0t (1,277 - K) 

Hence it follows that the rate of change of the radius of the contact region is inversely proportional 
to the radius of the contact part a0 (1.8) under steady heat-generation conditions. 

Suppose now that t ---> -0 in (2.17). Putting a(**) = a .  = const and using the first equation of (2.9), 
we obtain 

d% = 2A-3(a** / a0)2dA 

Substituting the last identity into the integrand of (2.17) we will have 
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[ ~]=2a"~B(A) -~3  (3.4) 0. 783 1 ,  ao o 

The integral on the right-hand side of (3.4) is equal to 0.5, and, consequently, we obtain the following 
algebraic equation for determining a .  

0,783a0{ 1 - [a**a-I(0)] 3 } = a** (3.5) 

If a**aq(0) ,~ 1 in (3.5), we obtain a** = 0.783a 0. Hence, with the above assumption that the distnqaution 
of the normal displtacement of an elastic punch obeys quadratic relation (1.4), the relative error when 
calculating the radius of the contact area under steady and unsteady heat generation conditions may 
amount to 21.7%. 

We can determine the temperature in the contact region from relations (1.3), (1.6), (1.7) and (2.3). 
Obviously the maximum values of T(r, t) will be reached at the centre of the circular contact zone. When 
r = 0, by (2.15) (the tilde is omitted, as above) we obtain 

' dx T(O,t)=Tol F l ( a ) ~  (t>O) 
0 

p (3.6) A 

FI(A)= o ~ ~-S2e-S2SdS' To = 1,044ao2x/-x0ar(1 +v)  

Using integration by parts we can represent the quadrature FI(A) in the form 

Fi(A ) = I/2A[! - F2(A)] 

F2(A)=le_A2 i eX2dx=fl-~e_A2dp(1. 3. A2 ) 
o 2 \ 2 '  2' 

(3.7) 

(values of the Doson function AF2(A) are tabulated in [16]). 
Figure 4 shows the evolution with time of the maximum dimensionless temperature Tsar(t) = 

T0qT(0, t), calculated from (3.6) and (3.7) for abrasive wear given by (2.5) of the surface of an elastic 
heat-conducting solid. Curves 1-3 correspond to !c = 0, 0.5 and 1.5. It can be seen that Tmax reaches a 
maximum value, after which the temperature at the contact is equalized. 

OA' 

0,2 

0 /O 20 

Fig. 4. 
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